AZƏRBAYCAN RESPUBLİKASI

Əlyazma hüququnda

TI-Pb-B^V-Ln-Te (B^V -Sb, Bi; Ln- Sm, Tb) SİSTEMLƏRİNİN BƏZİ QATILIQ MÜSTƏVİLƏRİ ÜZRƏ FAZA TARAZLIQLARININ TƏDQİQİ VƏ MODELLƏŞDİRİLMƏSİ

İxtisas: 2307.01 – fiziki kimya

Elm sahəsi: Kimya

İddiaçı: Qənirə İlqar qızı Ələkbərzadə

Fəlsəfə doktoru elmi dərəcəsi almaq üçün təqdim olunmuş dissertasiyanın

AVTOREFERATI

Bakı - 2024

İş Kataliz və Qeyri-üzvi Kimya İnstitutunun "Funksional qeyri-üzvi birləşmələrin termodinamikası" laboratoriyasında və Milli Aerokosmik Agentliyin Ekologiya İnstitutunun "Radioekoloji və ekokimyəvi tədqiqatlar" şöbəsində yerinə yetirilmişdir.

Elmi rəhbər:	AMEA-nın müxbir üzvü, professor Məhəmməd Baba oğlu Babanlı	
Rəsmi opponentlər:	kimya elmləri doktoru, professor, AMEA-nın müxbir üzvü Tofiq Abbasəli oğlu Əliyev	
	kimya üzrə fəlsəfə doktoru, dosent Fuad Şəmsəddin oğlu Kərimli	

kimya üzrə fəlsəfə doktoru, dosent Leyla Fərhad qızı Məşədiyeva

Azərbaycan Respublikasının Prezidenti yanında Ali Attestasiya Komissiyasının Bakı Dövlət Universiteti nəzdində fəaliyyət göstərən ED 2.16 Dissertasiya Şurası

Dissertasiya şurasının sədri:

kimya elmləri doktoru, professor İbrahim Qərib oğlu Məmmədov

Dissertasiya şurasının elmi katibi:

kimya elmləri doktoru, dosent Farid Nadir oğlu Nağıyev

Elmi seminarın sədri:

kimya elmləri doktoru, dosent _Dünya Məhəmməd qızı Babanlı

İŞİN ÜMUMİ XARAKTERİSTİKASI

Mövzunun aktuallığı və işlənmə dərəcəsi. Müasir texnikanın müxtəlif təyinatlı funksional materiallara olan tələblərinin durmadan artması yeni belə materialların axtarışı və onların alınmasının elmi əsaslarının yaradılması sahəsində tədqiqatları stimullaşdırır, bu isə materialşünaslığın yüksək texnoloji bir elm sahəsi kimi inkişafına təkan verir.

Əsrimizin ilk onilliyində materiyanın qeyri-adi kvant halı olan topoloji izolyatorun kəşfi yeni unikal, hətta ekzotik fiziki xassələrə malik olan funksional materialların yaradılmasına geniş imkanlar açdı ki, bu da elektron sənayesinin və yüksək texnologiyaların bir sıra digər sahələrinin inkişafında yeni dövrün başlanğıcını qoydu¹.

Topoloji izolyatorun kəşfindən sonrakı ilk illərdə aparılan tədqiqatlar göstərdi ki, uzun illər ərzində termoelektrik materiallar kimi geniş tədqiq olunan ağır metal telluridləri və onlar əsasında çoxkomponentli fazaların bir çoxu topoloji izolyator xassələrinə malikdirlər. Bu materiallar sırasında talliumun p² və p³- elementlərlə telluridləri, o cümlədən TlB^VTe₂, Tl₉B^VTe₆, Tl₄A^{IV}Te₃ (A^{IV}-Sn, Pb ; B^V-Sb, Bi) tipli birləşmələr xüsusi yer tutur. Hazırda həmin birləşmələr yalnız termoelektrik materiallar² kimi deyil, spintronikada, kvant hesablamalarında, optoelektronikada, skanedici qurğularda və bir çox başqa sahələrdə istifadə üçün olduqca perspektivli materiallar kimi tədqiqatçıların diqqət mərkəzindədir³.

Elementlərin dövri sistemindəki xüsusi mövqeyinə görə tallium eyni birləşmədə iki müxtəlif oksidləşmə dərəcəsində (+1; +3) və fərqli koordinasiya vəziyyətlərində ola bilir. Bu hal iki tallium telluridində - TlTe və Tl₅Te₃ birləşmələrində də müşahidə olunur. Həmin birləşmələrdə tallium atomları 1⁺ və 3⁺ oksidləşmə hallarında olub, müxtəlif kristalloqrafik mövqelərə malikdirlər. Bu nöqteyi nəzərdən

¹ Moore, J.E. The birth of topological insulators // Nature, 2010, v. 464, p.194–198

² Шевельков А.В. Химические аспекты создания термоэлектрических материалов // Успехи химии, 2008, т.77 (1), с. 3-21

³ Babanly M.B., Chulkov E.V., Aliev Z. S., Shevel'kov A.V., and Amiraslanov I. R. Phase diagrams in materials science of topological insulators based on metal chalkogenides // Russ. J. Inorg. Chem., 2017, v. 62(13), p. 1703–1729

TlB^VTe₂ birləşmələrinə tallium monotelluridin, Tl₉B^VTe₆ və Tl₄A^{IV}Te₃ birləşmələrinə isə Tl₅Te₃ birləşməsinin üçlü analoqları kimi baxmaq olar. Maraqlıdır ki, qeyd edilən hər üç tip üçlü birləşmənin lantanoid analoqları da movcuddur: TlLnTe₂, Tl₉LnTe₆ və Tl₄LnTe₃ (Ln-nadir torpaq elementi).

Qeyd edilənlər yuxarıda göstərilən tallium telluridlərindən təşkil olunmuş sistemlərin fiziki-kimyəvi tədqiqinin vacibliyini göstərir. Bu birləşmələrin kristal qəfəsində p^2 - və p^3 - elementlərin nadir torpaq elementləri ilə qismən əvəz olunması təkcə onların termoelektrik göstəricilərinin yüksəldilməsinə yox, həm də onlara əlavə funksionallıq, məsələn, maqnit xassələri verilməsinə gətirib çıxara bilər.

Yeni mürəkkəb tərkibli fazaların məqsədyönlü axtarışı və sintezinin fiziki-kimyəvi əsaslarının yaradılması xeyli dərəcədə müvafiq sistemlərdə faza tarazlıqlarının tədqiqi ilə bağlıdır. Faza diaqramları sistemdə yeni birləşmələrin mövcudluğunu göstərməklə yanaşı, onların əmələ gəlmə xarakteri, termiki davamlılığı, homogenlik sahələri, polimorf çevrilmələri və s. haqqında dolğun məlumatlar verir. Yeni çoxkomponentli metal telluridlərinin axtarışı baxımından formul və ya struktur analoqları olan birləşmələrdən təşkil olunmuş sistemlər xüsusi maraq kəsb edir, çünki onlarda geniş bərk məhlul sahələrinin əmələ gəlməsini gözləmək olar. Bu isə tərkibi dəyişməklə baza birləşmələrin funksional xassələrini optimallaşdırmağa imkan yaradır.

Tədqiqatın obyekti və predmeti. Qeyd edilənləri nəzərə alaraq dissertasiyanın **tədqiqat obyektləri** kimi Tl-Tb-B^V-Te (B^V-Sb, Bi) sistemlərinin Tl₂Te-Tl₉TbTe₆-Tl₉B^VTe₆, Tl-Pb-Ln-Bi-Te (Ln-Sm, Tb) sistemlərinin Tl₄PbTe₃-Tl₉LnTe₆-Tl₉BiTe₆ qatılıq müstəviləri götü-rülmüşdür. **Tədqiqatın predmeti** bu sistemlərdə faza tarazlıqlarının tədqiqi və riyazi modelləşdirilməsi olmuşdur.

Tədqiqatın məqsəd və vəzifələri. Dissertasiya işinin məqsədi tərkibində nadir torpaq elementi (NTE) saxlayan yeni çoxkomponentli dəyişən tərkibli fazaların əmələ gəlməsi gözlənilən Tl₂Te-Tl₉TbTe₆-Tl₉SbTe₆, Tl₂Te-Tl₉TbTe₆-Tl₉BiTe₆, Tl₄PbTe₃-Tl₉SmTe₆-Tl₉BiTe₆ və Tl₄PbTe₃-Tl₉TbTe₆-Tl₉BiTe₆ sistemlərində faza tarazlıqları xarakterinin müəyyən edilməsi, faza diaqramlarının riyazi modelləşdirilməsi və termodinamik analizi olmuşdur.

Bu məqsədə nail olmaq üçün aşağıdakı konkret məsələlər

qoyulmuş və həll edilmişdir:

✓ Tl₂Te-TlB^VTe₂-TlLnTe₂ sistemlərində fiziki-kimyəvi qarşılıqlı təsir xarakterinin təcrübi tədqiqi, onların faza diaqramlarının və müxtəlif "tərkib-xassə" diaqramlarının qurulması;

✓ Tl₅Te₃-tipli tetraqonal quruluşa malik yeni çoxkomponentli bərk məhlullar almaq üçün Tl₄PbTe₃-Tl₅BiTe₅-Tl₅LnTe₅ sistemlərində faza tarazlıqlarının təcrübi tədqiqi, müvafiq həcmi faza diaqramların, onların müxtəlif poli- və izotermik kəsiklərinin qurulması;

✓ Tl₄PbTe₃-Tl₉BiTe₆-Tl₉LnTe₆ sistemlərində fazaların likvidus və solidus səthlərinin riyazi modelləşdirilməsi, 3D vizuallaşdırılması və termodinamik analizi;

✓ tədqiq olunan sistemlərdə çoxkomponentli bərk məhlul nümunələrinin fərdi şəkildə alınması və xarakterizə edilməsi.

Tədqiqat metodları. Dissertasiyanın mövzusu üzrə tədqiqatlar fiziki-kimyəvi analizin ənənəvi metodları olan differensial termiki analiz (DTA), rentgenfaza analizi (RFA), mikroquruluş analizi (MQA) və skanedici elektron mikroskopiya (SEM) üsulları, və xəlitələrin mikrobərkliyinin ölçülməsilə aparılmışdır. DTA "NETZSCH 404 F1Pegasus system" cihaz və "TC-08 Termocouple Data Logger" elektron məlumat qeydedicisi əsasında yığılmış çoxkanatlı DTA qurğularında aparılmışdır. Ovuntu difraktoqramları Almaniyanın Bruker firmasının D8 ADVANCE və D2 Phaser cihazlarında çəkilmiş və müvafiq difraktometrlərin kompüter təminatı proqramları ilə analiz edilmişdir. SEM şəkilləri JEOLJSM-7600F markalı skanedici elektron mikroskop vasitəsilə əldə edilmişdir. Nümunələrin mikrobərkliklərinin ölçülməsi IIMT-3 markalı cihazda aparılmışdır.

Müdafiəyə çıxarılan əsas müddəalar.

- Tl₂Te-TlSb(Bi)Te₂-TlTbTe₂ sistemlərində faza tarazlıqlarına aid yeni nəticələr, o cümlədən həmin sistemlərin bərkfaza tarazlıqları diaqramları və "tərkib-xassə" diaqramları;

- Tl₄PbTe₃-Tl₉BiTe₆-Tl₉Sm(Tb)Te₆ sistemlərinin T-x-y faza diaqramları, onların bəzi politermik və izotermik kəsikləri;

- Tl₄PbTe₃-Tl₉BiTe₆-Tl₉Sm(Tb)Te₆ sistemlərində fazaların likvidus və solidus səthləri üçün analitik ifadələr və onlar əsasında qurulmuş müvafiq 3D- modellər;

- Yuxarıda göstərilən sistemlərdə aşkar edilmiş yeni dəyişən

tərkibli fazalar, onların kristalloqrafik, termiki, termodinamik və s. xassələri haqda məlumatlar.

Tədqiqatın elmi yeniliyi. İşdə aşağıdakı yeni mühüm elmi nəticələr alınmışdır:

- Tl₂Te-TlSbTe₂-TlTbTe₂ və Tl₂Te-TlBiTe₂-TlTbTe₂ sistemlərində fiziki-kimyəvi qarşılıqlı təsir xarakteri müəyyən edilmişdir. Hər iki sistemin bərkfaza tarazlıqları diaqramları qurulmuş, TlSbTe₂, TlBi-Te₂ və TlTbTe₂ birləşmələri əsasında geniş bərk məhlul sahələri aşkar edilmiş, onların homogenlik sahələri təyin olunmuşdur;

- Müvafiq beşkomponentli sistemlərin Tl₄PbTe₃-Tl₉BiTe₆-Tl₉LnTe₆ (Ln- Sm, Tb) qatılıq sahələrində faza tarazlıqlarının tam mənzərələri alınmış, bu qatılıq müstəviləri üzrə likvidus və solidus səthlərinin proyeksiyaları, T-x-y faza diaqramlarının bir sıra politermik və izotermik kəsikləri qurulmuş, hər iki tədqiq olunan sistemdə Tl₅Te₃ tipli tetraqonal quruluşa malik fasiləsiz bərk məhlullar aşkar edilmişdir;

- Tl₄PbTe₃-Tl₉BiTe₆-Tl₉LnTe₆ (Ln- Sm, Tb) sistemlərində fazaların likvidus və solidus səthləri üçün analitik ifadələr alınmış, onlar əsasında həcmi faza diaqramlarının 3D modelləşdirilməsi və termodinamik analizi həyata keçirilmişdir;

- Aşkar edilmiş yeni çoxkomponentli qeyri-stexiometrik fazaların seçmə nümunələri fərdi şəkildə sintez olunmuş və xarakterizə edilmişlər, onların ərimə xarakteri və temperaturu, kristal qəfəs tipləri və parametrləri, mikrobərklikləri təyin edilmişdir.

Tədqiqatın nəzəri və praktiki əhəmiyyəti. Dissertasiyanın tədqiqat obyektləri olan sistemlərdə faza tarazlıqlarına aid təcrübi nəticələr və riyazi modellər, həmçinin aşkar edilən yeni çoxkomponentli fazaların fiziki-kimyəvi xassələri mürəkkəb metal xalkogenidlərinin kimyasını və materialşünaslığını zənginləşdirir. Bu nəticələr müvafiq dəyişən tərkibli fazaların istiqamətli sintezinin və monokristal halında alınması texnologiyalarının işlənməsi üçün elmi əsasdır və bu baxımdan praktiki əhəmiyyət kəsb edir. İşin nəticələrinin praktiki əhəmiyyəti həm də ondan ibarətdir ki, qurulmuş faza diaqramları, onların alınmış riyazi modelləri, həmçinin yeni dəyişən tərkibli fazaların kristalloqrafik, termiki, termodinamik və s. xassələri fundamental fiziki-kimyəvi parametrlər olub, müvafiq elektron-informasiya sistemlərinə və məlumat bazalarına daxil edilə bilər.

Aprobasiyası və tətbiqi. Dissertasiyanın mövzusu üzrə 17 elmi əsər, o cümlədən 11 məqalə (6 məqalə WOS və Scopus bazalarında indekslənən elmi jurnallarda) və 6 məruzə tezisi (5 tezis beynəlxalq konfransların materiallarında) çap olunmuşdur.

Dissertasiya işinin əsas nəticələri aşağıdakı elmi konfranslarda məruzə və müzakirə edilmişdir: 3th, 5th International Turkic World Conference on Chemical Sciences and Technologies, (Baku, Azərbaycan, 10-13 sentyabr, 2017; Sakarya, Turkey, 25-29 oktyabr, 2019); "Высокочистые вещества и материалы. Получение, анализ, применение" XVI всероссийская конференция и IX школа молодых ученых, посвященная 100-летию Г.Г.Девятых (Новгород, Россия, 28-31 may, 2018); II international scientific conference of young researchers dedicated to the 95th anniversary of the national leader of Azerbaijan, H.Aliyev, (Baku, Azərbaycan, 27-28 aprel, 2018); Bceроссийская конференция "Химия твердого тела и функциональные материалы" и XII всероссийский симпозиум с международным участием "Термодинамика и материаловедение" (Санкт-Петербург, Россия, 21-28 may, 2018); Ümummilli lider H. Əliyevin anadan olmasının 96-cı ildönümünə həsr olunmuş "Müasir təbiət elmlərinin aktual problemleri" (Gəncə, Azərbaycan, 2-3 may, 2019); 14th International Conference on Theory and Application of Fuzzy Systems and Soft Computing - ICAFS-2020 (Budva, Montenegro, 27-28 August, 2020).

İşdə aşkar edilən yeni bərk məhlullar potensial termoelektrik, maqnit və topoloji izolyator materiallarıdır və müvafiq fiziki tədqiqatlar aparmaqla onların funksional xassələri optimallaşdırıla və tətbiq üçün tövsiyələr verilə bilər.

"Google Scholar Citations" informasiya sistemindən götürülən məlumatlara görə müəllifin dissertasiya mövzusu üzrə beynəlxalq elmi jurnallarda çap olunan 8 məqaləsinə 31 istinad edilmişdir.

Dissertasiya işinin yerinə yetirildiyi təşkilatın adı. İş Kataliz və Qeyri-üzvi Kimya İnstitutunun "Funksional qeyri-üzvi birləşmələrin termodinamikası" laboratoriyasında və Milli Aerokosmik Agentliyin Ekologiya İnstitutunun Radioekoloji və ekokimyəvi tədqiqatlar şöbəsində yerinə yetirilmişdir. **Müəllifin şəxsi iştirakı.** Dissertasiya işində təcrübi tədqiqatların aparılması, alınan nəticələrin işlənməsi və materialların çapa hazırlanması, əsasən müəllif tərəfindən həyata keçirilmişdir. Həmmüəllif olduğu elmi əsərlərdə müəllifin payı həlledici olmuşdur.

Dissertasiyanın struktur bölmələrinin ayrılıqda həcmi qeyd olunmaqla dissertasiyanın işarə ilə ümumi həcmi. Dissertasiya girişdən, dörd fəsildən, əsas nəticələrdən (simvol sayı 3106), 244 adda istifadə edilən elmi ədəbiyyat siyahısından ibarət olub, 156 səhifə ümumillikdə 173.550 həcmə malikdir. Dissertasiyaya 60 şəkil və 11 cədvəl daxil edilmişdir.

Giriş hissədə (simvol sayı 11270) dissertasiyanın mövzusunun aktuallığı əsaslandırılmış, işin məqsədi, alınan nəticələrin elmi yeniliyi, nəzəri və praktiki əhəmiyyəti göstərilmişdir.

Birinci fəsildə (simvol sayı 49425) dissertasiyanın mövzusu üzrə ədəbiyyat məlumatları verilmiş və təhlil edilmişdir.

İkinci fəsil (simvol sayı 40039) dissertasiya işində istifadə olunan sintez və fiziki-kimyəvi tədqiqat metodlarının qısa şərhinə həsr olunmuşdur.

Üçüncü fəsildə (simvol sayı 31010) Tl-Tb-Sb(Bi)-Te dördkomponentli sistemlərinin Tl₂Te-TlTbTe₂-TlSbTe₂ və Tl₂Te-TlTbTe₂-TlBiTe₂ qatılıq müstəviləri üzrə faza tarazlıqlarının tədqiqinin nəticələri verilir.

Dördüncü fəsildə (simvol sayı 36546) müvafiq beş komponentli sistemlərin Tl₄PbTe₃-Tl₉BiTe₆-Tl₉SmTe₆ və Tl₄PbTe₃-Tl₉Bi-Te₆-Tl₉TbTe₆ qatılıq müstəviləri üzrə faza tarazlıqlarının təcrübi tədqiqinin, həmçinin termodinamik analizinin və 3D modelləşdirilməsinin nəticələri verilir.

İŞİN ƏSAS MƏZMUNU

Girişdə dissertasiyanın mövzusunun aktuallığı əsaslandırılmış, işin məqsədi, alınan nəticələrin elmi yeniliyi, nəzəri və praktiki əhəmiyyəti göstərilmişdir.

Birinci fəslin əvvəlində (paraqraf 1.1) talliumun mürəkkəb telluridlərinin funksional xassələri haqqında ədəbiyyat məlumatları verilmiş və işin aktuallığı əsaslandırılmışdır. Göstərilmişdir ki, bu birləşmələr termoelektrik, optik, maqnit xassələri göstərən perspektivli funksional materiallardır. Sonrakı bölmələrdə tədqiqat obyektləri olan çoxkomponentli sistemlərin sərhəd binar Tl-Te, Sm-Te, Tb-Te sistemlərində (paraqraf 1.2 və 1.3), həmçinin sərhəd üçlü Tl-Pb (Sb,Bi)-Te sistemlərinin Tl₂Te-PbTe, Tl₂Te-Sb(Bi)₂Te₃ (paraqraf 1.4) kəsikləri üzrə faza tarazlıqlarına və aralıq fazaların fiziki-kimyəvi xassələrinə aid ədəbiyyat məlumatları təqdim və təhlil olunmuşdur. Bu məlumatlar təcrübi tədqiqatların planlaşdırılmasında və nəticələrin analizində istifadə olunmuşdur.

Fəslin sonuncu paraqrafı (1.5) nadir torpaq elementlərinin telluridləri əsasında çoxkomponentli sistemlərin fiziki-kimyəvi tədqiqinin müasir vəziyyətinin araşdırılmasına həsr olunmuşdur.

İkinci fəsil dissertasiya işində istifadə olunan sintez və fizikikimyəvi tədqiqat metodlarının qısa şərhinə həsr olunmuşdur.

Tədqiq edilən sistemlərin ilkin binar və üçlü birləşmələrinin sintezi üçün Almaniyanın Alfa Aesar şirkətinin məhsulu olan yüksək təmiz bəsit maddələrdən istifadə edilmişdir: qurğuşun (təmizliyin kütlə faizi 99.99, qeydiyyat nömrəsi 7439-92-1, külçə formasında); bismut (99.999, 7440-69-9, külçə); stibium (99.999; 7440-36-0, külçə); tallium (99.99, 13494-80-9, külçə); samarium (99.9, 7440-19-9, kiçik kristallar); terbium (99.9, 7440-27-9, kiçik kristallar)

Tədqiqatın ilkin mərhələsində həmin sistemlərdə başlanğıc komponentlər olan məlum binar (Tl₂Te, Tl₅Te₃) və üçlü birləşmələr (Tl₄PbTe₃, Tl₉SbTe₆, Tl₉BiTe₆, Tl₉SmTe₆, Tl₉TbTe₆, TlSbTe₂, TlBiTe₂, TlSmTe₂və TlTbTe₂) sintez və identifikasiya olunmuşdur. Sonrakı mərhələlərdə onlardan istifadə edərək aralıq tərkiblər sintez edilmişdir.

Yuxarıda göstərilən sintez metodlarının təhlilinə əsasən, binar (Tl₂Te, Tl₅Te₃) və üçlü (Tl₄PbTe₃, Tl₉SbTe₆, Tl₉BiTe₆ və TlBiTe₂) tallium telluridləri konqruent əridilməsi və nisbətən aşağı ərimə nöq-tələrini nəzərə alaraq, onlar vakuumlaşdırılmış kvars ampulalarda yüksək təmizlik dərəcəsinə malik elementar komponentlərin stexiometrik miqdarlarının vakuum şəraitində (~10⁻² Pa) birgə əridilməsi ilə sintez olunmuşdur.

TlSbTe₂ birləşməsi 753 K-də peritektik reaksiya üzrə parçalanmaqla əridiyindən, birbaşa qarşılıqlı təsirdən sonra nümunə 700 K-də 200 saat termiki emaldan keçirilmişdir. Elementar samarium və terbiumun yüksək ərimə temperaturları (müvafiq olaraq, 1347 və 1628 K), habelə yüksək temperaturlarda onların kvarsla qarşılıqlı təsirdə olmalarını və bir sıra digər çətinlikləri nəzərə alaraq, üçlü tallium-NTE telluridlərinin sintezi daxili divarları toluolun termiki parçalanması yolu ilə qrafitləşdirilmişdir, kvars ampulalarda xüsusi işlənib hazırlanmış üsulla aparılmışdır.

Tl₉SmTe₆ və Tl₉TbTe₆ birləşmələrinin sintezi zamanı elementar komponentlərdən deyil, stexiometrik miqdarda Tl2Te, elementar lantanoid və tellurdan istifadə edilmişdir, çünki tallium lantanoidlərlə yüksək termodinamik və termiki stabilliyə malik birləşmələr əmələ gətirir və bu üçlü birləşmələrin sintezinə mane olur. Təcrübi olaraq müəyyən edilmişdir ki, 1000 K-də əridilməklə alınan nümunələr tarazlıq halında deyillər. Onların termoqramlarında və difraktoqramlarında bu birləşmələrə aid olmayan əlavə effektlər müşahidə edilmişdir. Bu nümunələri tarazlıq halına maksimal yaxın vəziyyətə gətirmək üçün onlar toz halına salınmış, yaxşıca qarışdırılmış, preslənərək silindrik həb şəklinə gətirilmiş və 700 K-də 1000 saat ərzində termiki emal edilmişlər. Bəzi hallarda bu əməliyyat iki dəfə təkrar olunmuşdur. Yalnız belə sintez metodikası homogen nümunələrin alınmasını təmin etmişdir. TlSmTe2 və TlTbTe2 biləşmələrinin sintezi də evni yolla aparılmışdır. Termiki emal temperaturu 900 K, müddəti isə 1500 saat olmuşdur.

Sintez olunmuş birləşmələr DTA və RFA üsulları ilə identifikasiya olunmuşlar.

Tədqiq edilən sistemlərin nümunələri sintez və identifikasiya olunmuş ilkin binar və üçlü birləşmələrin vakuum şəraitində kvars ampulalarda birgə əridilməsi ilə hazırlanmışdır. Termiki emal olunmamış nümunələrin termoqramları çəkilərək solidus temperaturu müəyyənləşdirilmiş, daha sonra nümunələr solidus temperaturundan 20-50⁰ aşağı temperaturlarda uzun müddətli (800-1000 s.) termiki emal edilmişdir. Tarazlıq halının əldə edilməsini sürətləndirmək üçün xəlitələr müəyyən müddət (400-500 saat) termiki emaldan sonra toz halına salınmış, həblərə preslənmiş və həmin temperatur rejimlərində daha 400-500 saat termiki emaldan keçirilmişdir.

Tədqiqatlar DTA, RFA, SEM və MQA üsulları, həmçinin mikrobərkliyin ölçülməsilə aparılmışdır. Nümunələrin ovuntu rentgenoqramları "TopasV3.0 software" kompüter proqramları ilə işlənmişdir.

Üçuncü fəsildə Tl₂Te-TlTbTe₂-TlSbTe₂ və Tl₂Te-TlTbTe₂-TlBiTe₂ sistemlərində faza tarazlıqlarının tədqiqinin nəticələri verilmişdir.

Bu sistemlərin tədqiqinin nəticələri [5, 9-13, 15] işlərində öz əksini tapmışdır.

 $\label{eq:tilde} Tl_2Te-TITbTe_2-TISbTe_2 \mbox{ sistemin} II_2Te-TITbTe_2-TISbTe_2 \mbox{ sistemin} II_2Te-TISbTe_2 \mbox{ və } Tl_2Te-TITbTe_2 \mbox{ yan tərəflərində } \mbox{ əmələ} \mbox{ gələn } Tl_9TbTe_6 \mbox{ və } Tl_9SbTe_6 \mbox{ üçlü birləşmələri bu sistemi iki tabeli alt } \mbox{ sistemə bölür.}$

Baxılan alt sistemin üçüncü yan tərəfi Tl₂Te-Tl₉SbTe₆ sistemi haqda ədəbiyyatda ziddiyyətli məlumatlar vardır. Müəlliflərin nəticələrinə görə Tl₂Te-Tl₉SbTe₆ sistem ilkin birləşmələri arasında qeyri-məhdud bərk məhlulların əmələ gəlməsi ilə xarakterizə olunur. Lakin bəzi mənbələrə görə sistemdə Tl₂Te yaxınlığında bərk məhlullarda morfotrop faza keçidi müşahidə olunur. Tl₂Te (F. qr.C2/C) və Tl₉SbTe₆ (F.qr. I/4m) birləşmələrinin tamamilə fərqli kristal quruluşa sahib olduğunu nəzərə alsaq, bu iddia kifayət qədər əsaslı görünmür. Bu sistem üzrə tədqiqatlar çərçivəsində, müvafiq ədəbiyyat məlumatlarının ziddiyətli olmasını nəzərə alaraq onun Tl₂Te-Tl₉SbTe₆ yan tərəfi yenidən tədqiq edilmişdir.

Cədvəl 1

Tl2Te-Tl9SbTe6 sistemi üçün DTA nəticələri, mikrobərklik və krist	tal
qəfəs parametria	əri

Faza	Termik effektlər, K	Mikrobər klik, MPa	Qəfəs parametrləri Å
Tl ₂ Te	695	1400	a = 15.662(8); b = 8.987(4); $c = 31.196(12), \beta = 100.760, z = 44$
Tl9,95Sb0,05Te5,05	702	1515	-
Tl9,9Sb0,1Te5,1	702-715	1330; 1520	-
Tl _{9,8} Sb _{0,2} Te _{5,2}	708-728	1320	a = 8.9098(4); c = 12.6792(10)
Tl _{9,6} Sb _{0,4} Te _{5,4}	727-753	1270	a = 8.8889(5); c = 12.7604(9)
Tl _{9,5} Sb _{0,5} Te _{5,}	740-762	-	-
Tl _{9,4} Sb _{0,6} Te _{5,6}	750-773	1180	a = 8.8690(4); c = 12.8416(9)
Tl _{9,2} Sb _{0,8} Te _{5,8}	775-790	1100	a = 8.8490(3); c = 12.9228(9)
Tl ₉ SbTe ₆	800	1000	a = 8.8301(2); c = 13.0039(10)

Şəkil 1. Tl₂Te-Tl₉SbTe₆ sisteminin faza diaqramı (a), mikrobərkliyin (b) və qəfəs parametrlərinin (c) tərkibdən asılılıqları

Alınmış təcrübi nəticələr (Cədvəl 1) əsasında göstərilmişdir ki, Tl₂Te-Tl₉SbTe₆ (şəkil 1) peritektik tipli kvazibinar sistemdir. Peritektik tarazlıqda L+ $\delta \leftrightarrow \alpha$ olan maye fazanın koordinatları 5 mol % Tl₉SbTe₆ və 702 K -dir (α - və δ - müvafiq olaraq Tl₂Te və Tl₉SbTe₆ əsasında məhlullardır). α - və δ - fazalarının homogenlik sahələri ikifazalı α + δ sahəsi ilə ayrılır.

Peritektik tarazlıq temperaturunda Tl₂Te üçün homogenlik sahəsi təxminən 7 mol %, Tl₉SbTe₆ üçün isə 85 mol % təşkil edir. Temperaturun azalması ilə bu sahələr bir qədər daralır və otaq temperaturunda mikrobərklik ölçmələrinə və RFA nəticələrinə görə ~ 5 və ~ 80 mol % təşkil edir.

Bu bərk məhlulların qəfəs parametrlərinin və mikrobərkliklərinin tərkibdən asılılıq əyriləri üzərində müşahidə olunan sınma nöqtələri α və δ -fazaların doymuş tərkiblərini göstərir. **Bərkfaza tarazlıqları diaqramı** (şəkil 2) bu sistemdə otaq temperaturunda faza sahələrinin yerləşməsini əyani şəkildə göstərir. Göründüyü kimi sistem ikifazalı (α + δ) sahəsi ilə ayrılan iki birfazalı (α - və δ -) sahədən ibarətdir. Şəkildə həmçinin tədqiq olunan daxili politermik kəsiklər və xəlitələrin tərkibləri göstərilmişdir. Beləliklə, faza diaqramının 300 K-də izotermik kəsiyi göstərir ki, δ -fazanın homogenlik sahəsi qatılıq üçbucağının sahəsinin 90%-dən artığını tutur.

Şəkil 2. Tl₂Te-Tl₉SbTe₆-Tl₉TbTe₆ sisteminin 300 K temperaturunda bərk faza tarazlıqları diaqramı. Qırıq xətlər və nöqtələr tədqiq olunmuş kəsiklər və xəlitələrdir.

Likvidus səthi (şəkil 3) üç ilkin kristallaşma sahəsindən ibarətdir. Bu sahələrdə maye fazadan ilkin olaraq α - və δ -fazalar (1 və 2 sahələri), həmçinin tərkibcə baxılan qatılıq müstəvisindən kənarda yerləşən TITbTe₂ birləşməsi (3 sahəsi) kristallaşırlar. Sonuncu sahədə TITbTe₂ birləşməsinin maye məhluldan ilkin olaraq kristallaşması RFA üsulu ilə təsdiq edilmişdir.

Şəkil 3. Tl₂Te-Tl₉TbTe₆-Tl₉SbTe₆ sisteminin likvidus səthinin proyeksiyası. İlkin kristallaşma sahələri: 1-α; 2-δ; 3- TlTbTe₂.

Tl₂Te-Tl₉SbTe₆-Tl₉TbTe₆ alt sisteminin bir sıra politermik və izotermik kəsikləri qurulmuşdur. Onlar dissertasiyada verilir və ətraflı şərh olunur.

*Tl*₉*TbTe*₆-*TlTbTe*₂-*Tl*₅*bTe*₆ *alt sistemi*. Bu sistemin TlSbTe₂-TlTbTe₂ yan tərəfi üzrə xəlitələrin toz difraktoqramları şəkil 4-də göstərilmişdir. Şəkildən göründüyü kimi 70 və 90 mol% TlSbTe₂ tərkibli xəlitələrin difraksiya mənzərələri TlSbTe₂ ilə keyfiyyətcə eynidır. Bu onların birfazalı olmasını təsdiq edir. 20, 40 və 60 mol% TlSbTe₂ tərkibli nümunələrin difraksiya mənzərələri isə TlSbTe₂ və TlTbTe₂ birləşmələrinin refleksləri toplularından ibarətdir, yəni onlar faza diaqramlarında qonşu birləşmələr əsasında qarşılıqlı doymuş bərk məhlulların əmələ gətirdikləri ikifazalı xəlitələrdir.

Toz difraktoqramları əsasında fazaların kristal qəfəs tipləri təyin edilmiş və qəfəs parametrləri hesablanmışdır (cədvəl 2). İlkin birləşmələr əsasında bərk məhlulların homogenlik sahələrini dəqiqləşdirmək üçün qəfəs parametrlərinin qatılıqdan asılılıq qrafiki qurulmuşdur (şəkil 5). Qrafikdən göründüyü kimi bərk məhlullarda Sb \rightarrow Tb əvəzolunması zamanı *a* parametrinin qiyməti azalır, *c* parametrinin qiyməti isə artır. Hər iki parametrin tərkibdən asılılıq xətləri ~30 və 90 mol% TITbTe₂ tərkiblərində sınma nöqtələrinə malikdir. Aralıq tərkiblərdə isə qəfəs parametrləri qatılıqdan asılı olmadan sabit qalırlar. Sınma nöqtələri müvafiq olaraq TISbTe₂ və TITbTe₂ əsasında β_2 və β_1 -bərk məhlulların qarşılıqlı doymuş tərkiblərinə uyğundur. Qeyd etmək lazımdır ki, $\beta_1+\beta_2$ ikifazalı sahəsində ərintilərin ümumi tərkibindən asılı olmayaraq hər iki fazanın qəfəs parametrlərinin sabit qiymətə malik olması dolayısı ilə xəlitələrin tarazlıq halında olmasını da əks etdirir. β_2 -fazanın homogenlik sahəsində qəfəs parametrlərin qatılıqdan asılılığı xəttidir, yəni Veqard qaydasına tabe olur. Beləliklə, rentgenfaza analizi nəticələrinə görə TISbTe₂-TITbTe₂ sistemi solidusdan aşağıda stabil olub, komponentlərin məhdud qarşılıqlı həllolması ilə xarakterizə olunur. TISbTe₂ birləşməsi əsasında həllolma 30 mol%, TITbTe₂ əsasında isə 10 mol% təşkil edir.

Şəkil 4. TISbTe₂-TITbTe₂ sisteminin bəzi xəlitələrinin toz difraktoqramları

TITbTe₂-Tl₉TbTe₆-Tl₉SbTe₆-TlSbTe₂ alt sistemində bərkfaza tarazlıqlarının xarakterini müəyyən etmək üçün bu sahədən götürülmüş, bir neçə termiki emaldan keçirilmiş xəlitə RFA üsulu ilə tədqiq olunmuşdur. Müəyyən edilmişdir ki, Tl₉SbTe₆-Tl₉TbTe₆ sistemində əmələ gələn qeyri-məhdud bərk məhlullar (δ -faza) sistemin digər 2 birləşməsi əsasındakı bərk məhlullarla - TlTbTe₂ (β ₁) və TlSbTe₂ (β ₂) qarşılıqlı təsirdə olub, $\beta_1+\delta$ və $\beta_2+\delta$ ikifazalı sahələrinin və onları sərhədləndirən $\beta_1+\beta_2+\delta$ üçfazalı sahəsinin formalaşmasına gətirib çıxarır.

Cədvəl 2

TISbTe₂-TITbTe₂ sistemi üçün bəzi nümunələrinin faza tərkibi və qəfəs parametrləri

Tərkib, mol% TlSbTe2	Faza tərkibi	Rombik qəfəs parametrləri, Å
0	β_1	a = 4.4245(4); c = 23.3025(20)
10	β_1	a = 4.4238 (4); $c = 23.3751(21)$
20	$\beta_1 + \beta_2$	α – <i>faza:</i> $a = 4.4237$ (4); $c = 23.3759(21)$
		β – <i>faza:</i> $a = 4.4180(5)$; $c = 24.0061(20)$
40	$\beta_1 + \beta_2$	α – <i>faza:</i> $a = 4.4238$ (5); $c = 23.3747(21)$
		β – <i>faza:</i> $a = 4.4183(4)$; $c = 24.0024(20)$
60	$\beta_1 + \beta_2$	$\alpha - faza: a = 4.4238$ (5); $c = 23.3753(21)$
		β – <i>faza:</i> $a = 4.4184(5)$; $c = 24.0052(20)$
70	β_2	a = 4.4180(5); c = 23.9991(20)
80	β_2	a = 4.4173(4); c = 24.1754(20)
90	β_2	a = 4.4165(5); c = 24.2516(21)
100	β ₂	a = 4.4155(5); c = 24.2682(21)

Şəkil 5. TISbTe₂-TITbTe₂ sistemi üçün qəfəs parametrlərinin qatılıqdan asılılıq qrafiki

Alınmış nəticələr əsasında Tl₂Te-TlTbTe₂-TlSbTe₂ sisteminin bərkfaza tarazlıqları diaqramı qurulmuşdur (şəkil 6). Göründüyü kimi Tl₉TbTe₆-Tl₉SbTe₆ kəsiyi boyunca əmələgələn fasiləsiz δ -bərk məhlulların homogenlik sahəsi talliumla zəngin qatılıqlara doğru kəskin nüfuz edir və qatılıq üçbucağının Tl₂Te-Tl₉TbTe₆-Tl₉SbTe₆ hissəsinin böyük bir hissəsini tutur.

Tl₉SbTe₆-Tl₉TbTe₆-TlTbTe₂-TlSbTe₂ qatılıq sahəsində isə δ -fazanın homogenlik sahəsi praktiki olaraq Tl₉SbTe₆-Tl₉TbTe₆ kəsiyindən kənara çıxmır. TlTbTe₂-TlSbTe₂ sərhəd sistemində ilkin birləşmələr əsasında əmələ gələn β_1 - və β_2 - bərk məhlulların homogenlik sahələri də qatılıq üçbucağı daxilinə az (təxminən 1-2 mol%) nüfuz edir. Qatılıq üçbucağının bu sahəsində δ -faza β_1 - və β_2 - bərk məhlullarla stabil konnodlar və ikifazalı sahələr (β_1 + δ və β_2 + δ) yaradır. Bu sahələr bir-birilə geniş β_1 + β_2 + δ üçfazalı sahəsi ilə sərhədlənirlər.

Tl₂Te-TlTbTe₂-TlSbTe₂ sisteminin bismutlu analoqu keyfiyyətcə eyni faza tarazlıqları mənzərəsinə malikdir. Həmin sistemin bərkfaza tarazlıqları diaqramı, həmçinin Tl₂Te-Tl₉TbTe₆-Tl₉BiTe₆ qatılıq sahəsində likvidus və solidus səthlərinin proyeksiyaları, faza diaqramının bir sıra izotermik və politermik kəsikləri dissertasiyada verilmiş və ətraflı şərh olunmuşdur.

Dördüncü fəsildə müvafiq beş komponentli sistemlərin Tl₄PbTe₃ -Tl₉BiTe₆-Tl₉SmTe₆ və Tl₄PbTe₃ -Tl₉BiTe₆-Tl₉TbTe₆ qatılıq müstəviləri üzrə faza tarazlıqlarının tədqiqinin (4.1 və 4.2. paraqrafları), həmçinin termodinamik analizinin və modelləşdirilməsinin (4.3. paraqrafı) nəticələri verilir.

Bu sistemlərin tədqiqinin nəticələri [1-4, 6-8, 14, 16, 17] işlərində öz əksini tapmışdır.

Tl4PbTe3-Tl9BiTe6-Tl9SmTe6 sistemi. Bu sistemin nümunələri əvvəlcədən sintez və identifikasiya olunmuş ilkin üçlü birləşmələrin vakuumlaşdırılmış kvars ampulalarda birgə əridilməsi ilə hazırlanmışdır. Əridilmə nəticəsində alınmış xəlitələr 700 K-də 800 saat müddətində termiki emaldan keçirilmişdir. Tərkibində 60 mol%-dən artıq Tl9SmTe6 olan nümunələr əridilmədən sonra toz halına salınaraq, yaxşı qarışdırılmış, tabletlər halında preslənərək yenidən vakuumlaşdırılmış kvars ampulalarda yerləşdirilmiş və həmin şəraitdə termiki emal edilmişlər. Qatılıq üçbucağının iki yan tərəfi (Tl4PbTe3-Tl9SmTe6 və Tl9BiTe6-Tl9SmTe6) və bəzi daxili kəsikləri üzrə nümunələr hazırlanmışdır. Təcrübi nəticələrin birgə işlənməsi Tl4PbTe3-Tl9SmTe6-Tl9BiTe6 sistemində faza tarazlıqlarının qarşılıqlı təsir xarakterini müəyyən etməyə imkan vermişdir.

*Tl*₄*PbTe*₃*-Tl*₉*SmTe*₆ *və Tl*₉*BiTe*₆*-Tl*₉*SmTe*₆ *sistemləri.* Faza diaqramının bu yan tərəfləri üzrə nümunələrin DTA nəticələri, fazaların mikrobərklikləri və kristal qəfəs parametrləri cədvəl 3-də, onlar əsasında qurulmuş faza diaqramları və müvafiq "tərkib-xassə" diaqramları isə şəkil 7-də verilmişdir.

Tl₄PbTe₃-Tl₉SmTe₆ və Tl₉BiTe₆-Tl₉SmTe₆ kəsikləri (şəkil 7) Tl₅Te₃-tipli tetraqonal fasiləsiz bərk məhlulların (δ -faza) əmələ gəlməsi ilə xarakterizə olunurlar. Lakin onlar Tl₉SmTe₆-ın inkonqruent əriməsi səbəbindən Tl-Pb-Sm-Te və Tl-Bi-Sm-Te dördlü sistemlərinin qeyrikvazibinar kəsikləri olub, yalnız solidusdan aşağıda stabildirlər. 0-60 mol% Tl₉SmTe₆ qatılıq sahəsində ərintidən ilkin olaraq δ -bərk məhlullar, Tl₉SmTe₆ fazası ilə daha zəngin olan qatılıq sahələrində isə TlSmTe₂ kristallaşır. Bu geniş tərkib sahəsində (60-100 mol % Tl₉SmTe₆) L+TlSmTe₂ ikifazalı və L+TlSmTe₂+ δ üçfazalı sahələrinin əmələ gəlməsinə gətirib çıxarmalıdır. Lakin temperatur intervalının olduqca kiçik olması səbəbindən üçfazalı L+TlSmTe₂+ δ sahəsi təcrübi olaraq aşkar olunmamışdır və qırıq xətlərlə göstərilmişdir (şəkil 7).

Cədvəl 3

Tl4PbTe3 -Tl9BiTe6-T	Fl9SmTe6 sistemi	üçün DTA	nəticələri,
mikobərkliyin və qəfəs	parametrlərinin	tərkibdən	asılılıqları

	Tormilai	Mikro-	Tetraqonal qəfəs	
Tərkib	fermiki offolt K	bərklik,	bərklik, parametrləri, Å	
	enekt, K	MPa	а	С
Tl ₄ PbTe ₃	893	1120	8.8409(5)	13.0556(6)
$Tl_{8.2}Pb_{1.6}Sm_{0.2}Te_{6}$	845-875	1160	8.8504(4)	13.0482(9)
$Tl_{8.4}Pb_{1.2}Sm_{0.4}Te_6$	820-850	1180	8.8602(5)	13.0387(8)
$Tl_{8.5}Pb_{1.0}Sm_{0.5}Te_{6}$	817-845	-	8.8645(6)	13.0343(9)
$Tl_{8.6}Pb_{0.8}Sm_{0.6}Te_{6}$	790-830	1150	8.8702(6)	13.0298(9)
$Tl_{8.8}Pb_{0.4}Sm_{0.8}Te_6$	775-800; 1190	1140	8.8788(5)	13.0280(9)
$Tl_{8.9}Pb_{0.2}Sm_{0.9}Te_6$	760-775; 1155	-	-	-
Tl ₉ SmTe ₆	755; 1180	1080	8.8882(5)	13.0132(7)
$Tl_9Bi_{0,1}Sm_{0,9}Te_6$	760; 1150	-	-	-
$Tl_9Bi_{0,2}Sm_{0,8}Te_6$	765-775; 1095	1120	8.8810(4)	13.0201(7)
$Tl_9Bi_{0,4}Sm_{0,6}Te_6$	770-790	1140	8.8741(5)	13.0279(8)
$Tl_9Bi_{0,5}Sm_{05}Te_6$	780-800	-	8.8710(5)	13.0301(8)
$Tl_9Bi_{0,6}Sm_{0,4}Te_6$	785-810	1110	8.8673(5)	13.0340(9)
$Tl_9Bi_{0,8}Sm_{0,2}Te_6$	810-820	1070	8.8614(5)	13.0410(8)
Tl ₉ BiTe ₆	830	980	8.8545(4)	13.0476(7)

Tl₉SmTe₆ birləşməsilə zəngin tərkib sahəsində mayedən ilkin kristallaşan fazanın məhz TlSmTe₂ olması rentgenoqrafiya və SEM üsulları ilə təsdiq olunmuşdur. Bunun üçün həmin sahədən olan nümunə DTA üsulu ilə tədqiq edildikdən sonra termiki emal olunmadan onun toz difraktoqramı çəkilmiş və SEM mənzərəsi alınmışdır. Müəyyən edilmişdir ki, difraktoqramda başqa fazalarla yanaşı TlSmTe₂ birləşməsinə aid əksolunma refleksləri vardır. Bu həmin tərkibli maye məhlullardan ilkin olaraq məhz TlSmTe₂ birləşməsinin kristallaşdığını sübut edir.

Tl₄PbTe₃-Tl₉SmTe₆ və Tl₉BiTe₆-Tl₉SmTe₆ sistemlərinin hər ikisi üçün mikrobərkliyin tərkibdən asılılıq diaqramları yayğın maksimumdan keçən əyrilər şəklindədir (şəkil 7). Bu mənzərə fasiləsiz bərk məhlullar üçün xarakterikdir. Mikrobərkliyin qiymətinin stexiometrik birləşmə əsasında bərk məhlul əmələ gəlməsi ilə yüksəlməsi onunla izah olunur ki, əvəzləmələr zamanı (bizim hallarda Pb↔Sm və Bi↔Sm əvəzləmələri) atomların ion radiuslarının fərqli olması səbəbindən kristal qəfəsdə deformasiya baş verir və qatılığın artması ilə o güclənir. Bu isə mikrobərkliyin artmasına gətirib çıxarır.

Aralıq tərkiblər ilkin birləşmələrlə keyfiyyətcə eyni difraksiya mənzərələrinə malikdirlər. Onlar Tl₅Te₃-tipli tetraqonal quruluşda kristallaşırlar və reflekslərin təmiz birləşmələrə nəzərən cüzi sürüşməsi ilə xarakterizə olunurlar. Toz difraktoqramları Tl₅Te₃-tipli tetraqonal quruluşda tam indekslənir, hesablanmış kristal qəfəs parametrlərinin tərkibdən asılılıqları Veqard qaydasına tabedir.

Şəkil 7. Tl₉SmTe₆-Tl₉BiTe₆ və Tl₉SmTe₆-Tl₉PbTe₆ sistemlərinin faza diaqramı (*a*), mikrobərkliyin (b) və kristal qəfəs parametrlərinin (c) tərkibdən asılılıqları.

Likvidus və solidus səthləri. Sistemin T-x-y diaqramının likvidus səthi TlSmTe₂ birləşməsinin və onunla *ab* peritektik L+TlSmTe₂ $\leftrightarrow \delta$ tarazlıq əyrisi ilə sərhədlənən δ -bərk məhlulların ilkin kristallaşmasına uyğun olan iki sahədən ibarətdir. Solidus isə bir səthdən ibarətdir və bu səth sistemdə subsolidusda bircinsli δ -fazanın mövcud olmasını əks etdirir (şəkil 8).

Aldığımız təcrübi nəticələr Tl₄PbTe₃-Tl₉BiTe₆-Tl₉TbTe₆ sistemində də faza tarazlıqlarının oxşar mənzərəyə malik olmasını göstərdi. Dissertasiyada bu sistemin likvidus və solidus səthlərinin proyeksiyaları, həmçinin hər iki kvazi-üçlü sistemin faza diaqramının bir sıra izotermik, politermik kəsikləri verilmiş, ətraflı şərh olunmuşdur. Tl₉SmTe₆

Şəkil 8. Tl₄PbTe₃-Tl₉SmTe₆-Tl₉BiTe₆ sisteminin likvidus səthinin qatılıq üçbucağı üzərinə proyeksiyası. İlkin kristallaşma sahələri: 1-δ; 2-TlSmTe₂. Burada A, B və C – müvafiq sərhəd sistemlərinin ekvimolyar tərkibli xəlitələri. Qırıq xətlər – solidus əyriləri, nöqtəli düz xətlər – tədqiq olunmuş politermik kəsikləri.

Tl4PbTe3-Tl9SmTe6-Tl9BiTe6 sisteminin faza diaqramının 3D-modelləşdirilməsi.

Real yarımkeçirici sistemlərə tətbiq baxımından, faza tarazlıqları nəzəriyyəsinin əks məsələsinin (hal diaqramlarından termodinamik funksiyaların hesablanması) həlli daha böyük praktiki maraq kəsb edir, çünki termodinamik xassələrin eksperimental tədqiqi templəri faza tarazlıqlarının tədqiqindən xeyli aşağıdır.

Bu məsələnin termodinamik cəhətdən korrekt həlli üçün faza diaqramlarından əlavə fazaların xassələri haqqında bu və ya digər məlumat tələb olunur. Tələb olunan minimal ilkin məlumat toplularına uyğun düzgün həllərin mümkün variantları G.F.Voronin tərəfindən araşdırılmışdır.

Əksər real sistemlər üçün termodinamik cəhətdən korrekt həll üsullarının həyata keçirilməsi üçün lazımi minimum məlumatlar mövcud olmur. Buna görə də faza diaqramlarında toplanmış termodinamik məlumatı əldə etmək üçün daha çox təqribi üsullardan istifadə olunur. Ən çox istifadə edilən üsullar müxtəlif model təsəvvürlərinə əsaslanır ki, bu da çox məhdud ilkin məlumatlarla hesablamalar aparmağa imkan verir. Bu yanaşmanın əsas çatışmazlığı ondan ibarətdir ki, termodinamika çərçivəsində qəbul edilmiş modelin reallığa uyğunluq dərəcəsini aprior müəyyən etmək mümkün deyil. Buna görə də, bu cür qiymətləndirmələrdə həmişə faza modelinin qeyri-adekvatlığı ilə bağlı naməlum xəta olur, yəni onlar termodinamik cəhətdən qeyri-korrekdirlər. Bununla belə qeyd edildiyi kimi, seçilmiş modelin reallığa yaxın olmasını təmin etdikdə, belə yanaşmadan istifadə etmək mümkündür.

Üçlü və ya kvaziüçlü sistemlərin həcmi T-x-y diaqramlarının üçölçülü (3D) kompüter modelinin qurulmasının əsas prinsipi onun faza tarazlıqları səthlərinin və faza sahələrinin üçölçülü mənzərələrinin qurulmasıdır. T-x-y diaqramlarının 3D kompüter modellərindən istifadə tədqiq olunan sistemlərin həndəsi strukturunun müxtəlif variantlarını nəzərə almağa imkan verir. 3D modelləşdirmə səthlərin sayını və növünü (xətti və ya qeyri-xətti səthlər, müstəvi, künbəz və s.), faza sahələrinin sayını, üçfazalı sahələrdə hansı bərk fazaların sabit və ya dəyişən tərkibli olmasını müəyyən etməyə, cədvəl məlumatlarını üçölçülü mənzərələrə çevirməyə və yekun olaraq T-x-y diaqramının həndəsi modelini qurmağa imkan verir.

2Tl₄PbTe₃-Tl₉BiTe₆-Tl₉SmTe₆ və 2Tl₄PbTe₃-Tl₉BiTe₆-Tl₉TbTe₆ sistemlərinin üçölçülü likvidus səthlərini vizuallaşdırmaq üçün işdə OriginLab proqramının analitik variantından istifadə edilmişdir.

Tl₄PbTe₃-Tl₉BiTe₆-Tl₉SmTe₆ sisteminin faza diaqramının 3 D

modelləşdirilməsi üçün əvvəlcə onun Tl₉SmTe₆ (1) - 2Tl₄PbTe₃ (2), Tl₉SmTe₆ (1) - Tl₉BiTe₆ (3) və 2Tl₄PbTe₃ (2) -Tl₉BiTe₆ (3) sərhəd sistemlərinin likvidus və solidus əyrilərinin analitik ifadələri alınmışdır.

Bunun üçün heterogen sahələrdə tarazlıqda olan fazaların tərkibləri üçün qeyri-səlis mövqelər istifadə edilmişdir⁴.

1-2 və 1-3 sistemlərinin likvidus və solidus temperaturlarının tərkibdən monoton asılılığı səbəbindən onlar üçün aşağıdakı tənliklərdən istifadə olunmuşdur:

> T(likvidus)= $a+bx+(c\pm\Delta)x(1-x)$ T(solidus)= $a+bx+(d\pm\Delta)x(1-x)$

2-3 sistemində likvidus və solidus temperaturlarının tərkibdən mürəkkəb asılılığını nəzərə alaraq onun üçün

 $T(likvidus) = a+bx+(c_0+c_1x+c_2x^2)x(1-x)$

 $T(\text{solidus}) = a + bx + (d_0 + d_1x + d_2x^2 + d_3x^3)x(1-x)$

tənliklərindən istifadə edilmişdir. Burada a və b əmsalları Tl₉SmTe₆, Tl₄PbTe₃ və Tl₉BiTe₆ birləşmələrinin ərimə temperaturlarına əsasən müəyyən edilir, c və d əmsalları təcrübi xətalarla əlaqədardır. Tl₉SmTe₆(1)-2Tl₄PbTe₃(2)-Tl₉BiTe₆(3) üçlü sistemin likvidus və solidus səthləri üçün isə aşağıdakı tənliklərdən istifadə olunmuşdur:

 $T(likvidus)=yT_{liq}(1-2)+(1-y)T_{liq}(1-3)+T_{liq}(2-3)y(1-y)(1-x)$

T(solidus)=yT_{sol}(1-2)+(1-y)T_{sol}(1-3)+T_{sol}(2-3)+by(1-y)(1-x)² Yuxarıdakı ifadələrdə x – Tl₉SmTe₆ birləşməsinin mol hisəsi; y = x_2 /

(1-*x*); (1-y) = x_3 / (1-*x*); x_2 , x_3 - müvafiq olaraq Tl₄PbTe₃ və Tl₉BiTe₆ birləşmələrinin mol hissələridir.

Sərhəd sistemlərində əmələ gələn bərk məhlulların əmələgəlmə sərbəst enerjisini hesablamaq üçün assosiasiya olunmuş requlyar məhlul modelinin asimmetrik versiyasından istifadə edilmişdir:

 $\Delta G_{T}^{0} = (a+bT)x^{m} (1-x)^{n} + RT[px \ln x + q(1-x) \ln (1-x)]$

Burada birinci hədd requlyar məhlullar modelinin asimmetrik versiyasında bərk məhlulların qarışma entalpiyasını göstərir. Qeyri-

⁴ Mammadov, A.N., Aliev, Z.S., Babanly, M.B. Study of the Uncertainty Heterogeneous Phase Equilibria Areas in the Binary YbTe-SnTe Alloy System. // 13th International Conference on Theory and Application of Fuzzy Systems and Soft Computing (ICAFS 2018). Advances in Intelligent Systems and Computing, -Springer, Cham, - 2019, - vol. 896, - p. 815-822

məhdud bərk məhlullar üçün qarışma parametri a<0, b> 0; ikinci hədd qeyri-molekulyar birləşmələr modelinə görə bərk məhlulların qarışma konfiqurasiya entropiyasıdır; p və q birləşmələrdəki müxtəlif atomların sayını göstərir; R= 8.314 C·mol⁻¹·K⁻¹.

Likvidus və solidus əyrilərinin optimallaşdırılması çoxməqsədli genetik alqoritmdən (ÇGA) istifadə etməklə aşağıdakı sxem üzrə aparılmışdır⁵: əvvəlcə ÇGA üçün DTA nəticələri əsasında hər bir parametr üçün axtarış diapazonu müəyyən edilmişdir. Sonra dəyişənlərin qiymətlərini variasiya etməklə onların formallaşdırdığı likvidus və solidusun təcrübəyə ən yaxşı uyğunluğu təmin edilmişdir. Qeyrisəlis məntiq qiymətləndirilməsi sxemi müəyyən üzvün bütün mümkün qiymətlərinə baxır və onları 0 ilə 1 arasındakı qiymətə dəyişilir. Ən pis yanaşmada qiymət sıfır, ən yaxşıda birə bərabər olur. Qeyrisəlis məntiq sxemindən istifadə edərək, bütün üzvlər üçün 1-ə uyğunluq səviyyəsinə və ya ona daha yaxın mövqeyə çatana qədər optimallaşdırma aparılır. Bu vəziyyətə çatdıqda, model parametrləri üzrə qeyri-müəyyənlik sərhədlərini müəyyən etmək üçün alınmış son topludan istifadə olunur.

Sərhəd sistemlərin likvidus və solidus əyriləri üçün aşağıdakı analitik asılılıqlar alınmışdır:

2Tl4PbTe3- Tl9SmTe6 sistemi üçün

1)T(liq)=893-138*x+70*x*(1-x); 2)T(liq)= 893-138*x+56*x*(1-x); 3)T(liq)=893-138*x+44*x*(1-x); 4)T(sol)= 893-138*x-52*x*(1-x); 5)T(sol)= 893-138*x-62*x*(1-x); 6)T(sol)= 893-138*x-70*x*(1-x) . **Tl9BiTe6** –**Tl9SmTe6 sistemi üçün** 1) T(liq)=830-75*x+52*x*(1-x); 2)T(liq)=830-75*x+45*x*(1-x) 3) T(liq)=830-75*x+39*x*(1-x); 4)T(sol)=830-75*x-43*x*(1-x); 5) T(sol)=830-75*x-50*x*(1-x); 6)T(sol)=830-75*x-57*x*(1-x). **Tl9BiTe6 -2Tl4PbTe3 sistemi üçün**

1) $T(liq)=830+63*x+x*(1-x)*(46.7-100.7*x+80.4*x^2);$

2) $T(liq)=830+63*x+x*(1-x)*(46.7120.7*x+98.4*x^2);$

3) $T(liq)=830+63*x+x*(1-x)*(42.7-130*x+98.4*x^2)$,

4) $T(sol) = 830 + 63 \times x + x \times (1 - x) \times (-45 + 68 \times x - 184 \times x^{2} + 125 \times x^{3});$

⁵ Mamedov, A.N. Thermodynamics of systems with non-molecular compounds / A.N.Mamedov. - LAP Germany, - 2015. - 124 p

5)T(sol)=830+63*x+x*(1-x)*(-55+68*x-184*x^2+125*x^3); 6)T(sol)=830+63*x+x*(1-x)*(-65+68*x-184*x^2+125*x^3)

Bu tənliklər əsasında hər üç kəsik üzrə likvidus və solidus əyriləri qurulmuşdur. 2Tl₄PbTe₃-Tl₉SmTe₆ və Tl₉BiTe₆–Tl₉SmTe₆ sistemlərinin likvidus və solidus əyriləri şəkil 9-da verilir. Göründüyü kimi müxtəlif ifadələr üzrə hesablanmış likvidus və solidus əyriləri bir-birilə və təcrübi nəticələrlə yaxşı uyğunluq təşkil edir.

Şəkil 9. 2Tl₄PbTe₃-Tl₉SmTe₆ və Tl₉BiTe₆-Tl₉SmTe₆ sistemlərinin likvidus və solidus əyriləri. Xətlər –hesablama, kvadratlar – təcrübə.

Tl₄PbTe₃-Tl₉SmTe₆-Tl₉BiTe₆ sisteminin likvidus və solidus səthlərinin modelləşdirilməsi üçün aşağıdakı riyazi ifadələr alınmış və onlar əsasında faza diaqramının 3D görüntüsü əldə olunmuşdur (şəkil 10).

T (TlSmTe₂ birləşməsinin likvidusu)=(-1248+4673*x-2300*x^2)*y+ (-1248+4673*x-2300*x^2)*(1-y) T (bərk məhlulların likvidusu)= $y^*T_{liq}(1-2)+(1-y)^*T_{liq}(1-3)+ay^*(1-y)*(1-x_1)=(893-138*x+56*x^*(1-x))*y+(830-75*x+45*x^*(1-x))*(1-y)+40*y^*(1-y)*(1-x),$ T (solidus)= $y^*T_{sol}(1-2)+(1-y)^*T_{sol}(1-3)+by^*(1-y)*(1-x)^2 = (893-138*x-62*x^*(1-x))*y+(830-75*x-50*x^*(1-x))*(1-y)+44*y^*(1-y)*(1-x)^2$

Hesablamalar nəticəsində müəyyən edilmişdir ki, 300–900 K temperatur intervalında qarışma Gibbs sərbəst enerjisinin ikinci tərtib

törəməsi sıfırdan böyükdür. Ona görə də bütün tərkib intervalında funksiyanın dayanıqlıq dərəcəsi (Ψ > 0) də sıfırdan böyükdür. Bu isə bərk məhlulların termodinamik stabilliyini göstərir.

Şəkil 10. Tl₈PbTe₃ - Tl₉BiTe₆- Tl₉SmTe₆ sisteminin 3D vizuallaşdırılmış modeli

Eyni qayda ilə Tl₈PbTe₃-Tl₉BiTe₆-Tl₉TbTe₆ sisteminin 3 D termodinamik modelləşdirilməsi aparılmışdır.

Beləliklə, baxılan hər iki kvaziüçlü sistemin faza diaqramının 3 D modelləşdirilməsi və termodinamik analizi təcrübi nəticələrlə yaxşı uyğun gəlir və göstərir ki, Tl₅Te₃ birləşməsinin quruluş analoqları olan üçlü birləşmələrdən təşkil olunmuş mürəkkəb sistemlər termodinamik stabil qeyri-məhdud bərk məhlulların əmələ gəlməsi ilə səciyyələnir və bu sistemlərdə əmələ gələn maye və bərk məhlullar assosiasiya olunmuş requlyar məhlul hesab edilə bilər.

NƏTİCƏLƏR

 DTA, RFA, SEM və mikrobərkiliyin ölçülməsi üsulları ilə Tl-B^V-Tb-Te (B^V-Sb, Bi) sistemlərinin Tl₂Te-TlB^VTe₂-TlTbTe₂ qatılıq sahələrində fiziki-kimyəvi qarşılıqlı təsir xarakteri müəyyən edilmiş, hər iki tərkib müstəvisi üzrə bərkfaza tarazlıqları diaqramları və bir sıra "tərkib-xassə" diaqramları qurulmuşdur. Göstərilmişdir ki, hər iki sistem bütövlükdə qeyri-kvaziüçlü olsa da subsolidusda stabildir. Fasiləsiz bərk məhlullar gətirən Tl₉TbTe₆-Tl₉B^VTe₆ daxili kəsikləri bu sistemləri iki müstəqil alt sistemə bölür: Tl₂Te-Tl₉B^VTe₆-Tl₉TbTe₆ və TlB^VTe₂-Tl₉B^VTe₆-Tl₉TbTe₆-TlTbTe₂.

- Tl₂Te-Tl₉B^VTe₆-Tl₉TbTe₆ alt sistemləri üzrə faza tarazlıqlarının T-x-y koordinatlarında tam mənzərələri alınmışdır. Hər iki sistemin likvidus və solidus səthlərinin proyeksiyaları, faza diaqramlarının bir sıra politermik və izotermik kəsikləri qurulmuşdur. Müəyyən edilmişdir ki, likvidus səthləri Tl₉B^VTe₆-Tl₉TbTe₆ kəsikləri üzrə fasiləsiz bərk məhlulların (δ-faza), həmçinin Tl₂Te və TITbTe₂ birləşmələri əsasında fazaların ilkin kristallaşmasını əks etdirən 3 sahədən ibarətdir, solidus səthləri isə ilk iki fazaya aid 2 səthdən ibarətdir. δ-fazanın homogenlik sahəsi qatılıq üçbucağı daxilinə kəskin nüfuz edərək onun sahəsinin 90%-ə qədər hissəsini əhatə edir.
- 3. TIB^VTe₂-Tl₉B^VTe₆-Tl₉TbTe₆-TITbTe₂ alt sistemlərində Tl₉B^VTe₆-Tl₉TbTe₆ yan tərəfləri üzrə əmələ gələn fasiləsiz bərk məhlullar (δ -faza) TITbTe₂ və TIB^VTe₂ birləşmələri əsasında geniş bərk məhlul sahələri ilə (β_1 və β_2) qarşılıqlı təsirdə olub, β_1 + δ və β_2 + δ və β_1 + β_2 + δ heterogen sahələri əmələ gətirir. Müxtəlif fiziki-kimyəvi metodlarla β_1 - və β_2 -fazaların homogenlik sahələri, həmçinin göstərilən heterogen sahələrin sərhədləri təyin edilmişdir.
- 4. Müvafiq beşkomponentli sistemlərin Tl4PbTe₃-Tl9BiTe₆-Tl9SmTe₆ və Tl4PbTe₃-Tl9BiTe₆-Tl9TbTe₆ qatılıq müstəviləri üzrə faza tarazlıqlarına aid yeni qarşılıqlı tənzimlənmiş nəticələr kompleksləri alınmışdır. Hər iki alt sistemin T-x-y diaqramının bir sıra şaquli və üfqi kəsikləri, həmçinin likvidus və solidus səthlərinin qatılıq müstəviləri üzərinə proyeksiyaları qurulmuşdur. Müəyyən edilmişdir ki, likvidus səthi δ-fazanın və TlLnTe₂ (Ln-Sm, Tb) əsasında fazanın ilkin kristallaşma sahələrindən, solidus isə δ-fazaya aid bir səthdən ibarətdir. Hər iki alt sistem Tl9SmTe₆ və Tl9TbTe₆ birləşmələrinin inkonqruent əriməsi səbəbindən qeyrikvaziüçlü olsa da, subsolidusda stabildir və Tl5Te₃ tipli tetraqonal qəfəsdə kristallaşan fasiləsiz bərk məhlul seriyaları əmələ gətirir.
- 5. Assosiasiya olunmuş requlyar məhlul yanaşmasına əsaslanmaqla

Tl₄PbTe₃-Tl₉BiTe₆-Tl₉SmTe₆ və Tl₄PbTe₃-Tl₉BiTe₆-Tl₉TbTe₆ sistemlərində fazaların likvidus və solidus səthlərinin analitik tənlikləri alınmış, onların 3D modelləri yaradılmış və vizuallaşdırılmışdır. Bu modellər əsasında faza diaqramlarının termodinamik analizi həyata keçirilmiş, həm maye, həm də bərk məhlulların assosiasiya olunmuş requlyar məhlul modelinə uyğunluğu göstərilmişdir.

6. Tədqiq edilən dörd- və beşkomponentli sistemlərdə faza tarazlıqlarına aid alınmış nəticələr əsasında, onlarda aşkar edilmiş yeni dəyişən tərkibli fazaların verilmiş tərkibli seçmə nümunələri fərdi şəkildə sintez olunmuş və xarakterizə edilmişlər. Həmin nümunələrin ərintidən kristallaşma xarakteri və temperatur intervalları, həmçinin kristalloqrafik parametrləri təyin edilmişdir. Aşkar edilmiş yeni bərk məhlullar tənzimlənə bilən tərkibə və funksional xassələrə malik potensial maqnetik topoloji izolyatorlar və termoelektrik materialları kimi maraq kəsb edir.

Dissertasiyanın əsas nəticələri aşağıdakı elmi əsərlərdə çap olunmuşdur.

- Alakbarzade, G.I. Tl₄PbTe₃-Tl₉SmTe₆ system / G.I.Alakbarzade, D.M.Babanly, S.Z.Imamaliyeva // Condensed Matter and Interphases, - 2017. 19 (4), - c. 474-478.
- Alakbarzade, G.I., Mehdiyeva, I.F., Mirzoyeva, R.J., Imamaliyeva, S.Z. Phase formation in Tl₄PbTe₃-Tl₉BiTe₆-Tl₉LnTe₆ (Ln-Sm, Tm) systems and some properties of solid solutions // 3rd International Turkic World Conference on Chemical Sciences and Technologies, - Baku, - 2017, - p. 259.
- Imamaliyeva, S.Z. Phase equilibria in the Tl₄PbTe₃-Tl₉SmTe₆-Tl₉BiTe₆ section of the Tl-Pb-Bi-Sm-Te system / S.Z.Imamaliyeva, G.I.Alakbarzade, M.A.Mahmudova [et al.] // Acta Chimica Slovenica, - 2018. vol.65, - p. 365–371.
- Imamaliyeva, S.Z. Experimental study of the Tl₄PbTe₃-Tl₉TbTe₆-Tl₉BiTe₆ section of the Tl-Pb-Bi-Tb-Te system / S.Z.Imamaliyeva, G.I.Alakbarzade, M.A.Mahmudova [et al.] // Materials Research, - 2018. 21 (4), - p. 20180189.
- 5. Imamaliyeva, S.Z. Tl₂Te-Tl₉SbTe₆-Tl₉TbTe₆ system / S.Z.Imam-

aliyeva, G.I.Alakbarzade, K.N.Babanly [et al.] // New Materials, Compounds and Applications, - 2018. 2 (3), - p. 221-230.

- Алекберзаде, Г.И., Имамалиева, С.З., Салимов, З.Э., Бабанлы, М.Б. Физико-химическое исследование систем Tl4PbTe3-Tl9LnTe6-Tl9BiTe6 (Ln-Sm, Gd, Tb) // "Высокочистые вещества и материалы. Получение, анализ, применение" XVI всероссийская конф. и IX школа молодых ученых, посв. 100-летию Г.Г.Девятых, - Новгород, - 2018, - с. 22.
- Алекберзаде, Г.И., Исмаилова, К.Г, Салимов, З.Э., Имамалиева, С.З. Получение и физико-химическое исследование новых теллуридных фаз в системе Tl₄PbTe₃-Tl₉LnTe₆-Tl₉BiTe₆ // II international scientific conference of young researchers dedicated to the 95th Anniversary of the National leader of Azerbaijan, Heydar Aliyev, - Baku, - 2018, - p.158-159.
- Алекберзаде, Г.И., Имамалиева, С.З., Бабанлы, М.Б. Новые фазы переменного состава – потенциальные термоэлектрические материалы в системах Tl4PbTe3-Tl9BiTe6-Tl9Sm(Tb)Te6 // Всероссийская конференция с международным участием "Химия твердого тела и функциональные материалы"и XII всероссийский симпозиум с межд. участием "Термодинамика и материаловедение", - Санкт-Петербург, -2018, - с. 155.
- 9. Alakbarzade, G.I. Solid-phase equilibria in the TlBiTe₂-TlTbTe₂ system // Chemical Problems, 2019. 4 (17), p. 565-571.
- 10. Alakbarzade, G.I. Rentgenographic investigation of solid-phase equilibria in the TlSbTe₂-TlTbTe₂ system // Azerbaijan Chemical Journal., 2019. №3, p. 84-87.
- Alakbarzade, G.I., Imamaliyeva, S.Z., Shukurova, G.M., Babanly, M.B. Solid-phase equilibria in the TlBi(Sb)Te₂-TlTbTe₂ systems // 5th International Turkic World Conference on Chemical Sciences and Technologies (ITWCCST 2019), - Sakarya, -2019, - p. 136.
- 12. Ələkbərzadə, Q.İ., Şükürova, Q.M., Mirzəyeva, R.C., İmaməliyeva, S.Z. TISbTe₂-TITbTe₂ sistemində bərk faza tarazlıqları // Müasir təbiət və iqtisad elmlərinin aktual problemləri, - Gəncə, -2019. - s. 31-33.

- Imamaliyeva, S.Z. Solid-phase equilibria diagram of the Tl₂Te-TITbTe₂-TISbTe₂ system / S.Z.Imamaliyeva, G.I.Alakbarzade, V.A.Gasymov [et al.] // New Materials, Compounds and Applications, - 2020. 4 (2), - p. 99-107.
- Imamaliyeva S.Z. Modeling the phase diagrams of the Tl₉SmTe₆ -Tl₄PbTe₃ and Tl₉SmTe₆ -Tl₉BiTe₆ systems / S.Z.Imamaliyeva, G.I.Alakbarzade, A.N.Mamedov [et al]. // Azerbaijan Chemical Journal, - 2020. №4, - p. 12-16.
- Imamaliyeva, S.Z. Phase relations in the Tl₂Te-TlBiTe₂-TlTbTe₂ system / S.Z. Imamaliyeva, G.I.Alakbarzade, D.M.Babanly [et al] // Condensed Matter and Interphases, - 2021. 23 (1), - p. 32-40.
- 16. Imamaliyeva, S.Z., Alekberzade, G.I., Mamedov, A.N., Tagiev, D.B., Babanly, M.B. Modeling the phase diagram of the Tl₉SmTe₆-Tl₄PbTe₃-Tl₉BiTe₆ system // 14th International Conference on Theory and Application of Fuzzy Systems and Soft Computing (ICAFS 2020). Advances in Intelligent Systems and Computing, Springer, Cham, 2021. vol.1306, p. 480-489.
- 17. Imamaliyeva, S.Z. Modeling the phase diagram of the Tl₉TbTe₆ Tl₄PbTe₃ -Tl₉BiTe₆ system / S.Z.Imamaliyeva, G.I.Alakbarzade, A.N.Mamedov [et al] // Azerbaijan Chemical Journal, 2021. №2, p. 6-12.

Dissertasiyanın müdafiəsi _____ 2024-cü il tarixində saat _____ Bakı Dövlət Universitetində fəalliyət göstərən ED 2.16 Dissertasiya Şurasının iclasında keçiriləcək.

Ünvan: AZ 1148, Bakı şəhəri, Z.Xəlilov küç, 23.

Dissertasiya ilə Bakı Dövlət Universitetinin kitabxanasında tanış olmaq mümkündür.

Dissertasiya və avtoreferatın elektron versiyaları <u>www.kqkiamea.az</u> rəsmi internet saytında yerləşdirilmişdir.

Avtoreferat _____ 2024-cü il tarixində zəruri ünvanlara göndərilmişdir.

Çapa imzalanıb: 04.10.2024 Kağızın formatı: 60x84^{1/16} Həcm: 39222 işarə Tiraj: 100 nüsxə