Министерство Образования Азербайджанской Республики

Бакинской Государственной Университет

Факультет: ХИМИЯ

Специальность: - 060504 «Химия»

Направленность: - Нефтехимия

ПРОГРАММА

Дисциплины для магистров по предмету

«Термодинамика процессов переработки нефти, газа и нефтехимическое синтеза»

Напечатана (04.12 2019 год, протокол № 10) решением Ученого Совета Химического Государственнего Университета

БАКУ - 2019

Составители:

Сотрудники кафедры «Химия нефти и химическая

технология» БГУ проф. М.Р.Байрамов проф. И.Г.Мамедов доц. Н.Ю.Зейналов

Редактор:

Завед. кафедорой «Химия

нефти и химическая техно-

логия» БГУ

проф. И.Г.Мамедов

Рецензенты:

Доц. кафедры «Химия нефти и химическая технология» БГУ М.А.Джавадов

Завед. кафедрой «Физическая и коллоидная химия»

БГУ

проф.Е.И.Ахмедов

«Термодинамика процессов переработки нефти, газа и нефтехимического синтеза»

Пояснительный лист:

Предмет «Термодинамика процессов переработки нефти, газа и нефтехимического синтеза» освоено на I курсе магистров специализированные по «Нефтехимия» и «Технология переработки нефти» в объеме 30 часов (15ч. лекции и 15ч семинар).

Цель предмета: На основе термодинамического анализа химико-технологических процессов (ХТП) определение энергетические выгодности процессов переработки нефти (п/н), газа и нефтехимического (н/х) синтеза и оценивание направленность вероятных превращений.

Должность предмета: С использованием результатов термодинамического анализа ХТП реализуются предварительно оптимизации и определения целевой направленность вероятных превращений. Практические изучение результатов применение учитывается для процессов п/н. и н/х синтеза.

В результате студенты, освоения предмета Должен знать:

- Информационного анализа процессов перера-

ботки нефти, газа и нефтехимического синтеза синтеза;

- Роль химической термодинамики при разработке и управления технологии процессов п/н и н/х синтеза:
- Методы определение основные термодинамических показателей;
 - Оценивание равновесное состояние XTП;
 - Определение направленность ХТП;
- Термодинамической анализ процессов переработки нефти и газа;
- Термодинамического анализ процессов н/х синтеза с различном назначением.

Должен уметь:

- Определение термодинамических показателей XTП:
- Распределение термодинамических показателей в зависимости от параметров XTП;
- Роль термодинамического анализа в ходеопределение направленность XTП;
- Определение термодинамических показателей углеводородов участвующих в процессов п/н и н/х синтеза;
- Роль термодинамического анализа в ходе определение равновесного состояния процессов п/н и н/х синтеза;
 - Применение термодинамического анализа в ходе

оптимизации и выбора целевых направлении XTП.

Приспособить:

- Должен уметь знания по изучению теоретической основы химической технологии;
- На представлению теоретического анализа процессов нефти, газа и н/х синтеза;
- На умеющие знания для теоретического оценивания равновесного состояния и направленность XTП;
- По знанию определения термодинамических показателей участвующих процессов п/н и н/х синтеза;
- Имеющие представлены по информационного и термодинамического анализа в области определение равновесного состояние и направленность процессов п/н и н/х синтеза.

Распределение часов лекции по темам

No	Темы	Лекции		
1.	Термодинамическое основы хи- мической технологии.	4		
2.	Термодинамика процессов энергетической деструкции углеводородов.	2		
3.	Термодинамическое основы процессов окисления нефтяных углеводородов	2		
4.	Термодинамика процессов термокаталитической перера- ботка нефтяных углеводоро- дов.	2		
5.	Термодинамика промышленных процессов н/х синтеза реализаванные на основе газов каталитического крекинга.	2		
6.	Термодинамика процессов н/х синтеза применяемых по различного назначениях	3		
	всего:	15		

Распределение часов семинары по темам

No	Темы	Семинар
1.	Определение термодинамических показателей различных углеводородов	2
2.	Использование результатов термодинамического анализа при оптимизации XTC	2
3.	Определения термодинамичес- ких показателей процессов тер- модинамической превращения углеводородов	2
4.	Равновесное состояние про- цессов окисления углеводо- родов	2
5.	Термодинамические показате- ли термодинамических прев-я углеводородов	2
6.	Термодинамической анализ основных реакции процесса риформинга	2
7.	Задачи по термодинамического анализа процессов нефтехимии синеза применяемых с различного назначениям	3
	15	

ТЕМЫ И ИХ СОДЕРЖАНИЕ

Тема	1.	Ведение.	Термодинамические	основы
химическ	ой т	ехнологии	I	4 ч.

- 1.1.Основные методу применяемых в ходе организации и управлении процессов переработки нефти и газа.
- 1.2. Термодинамические метод анализа. Основные термодинамические показатели. Экстенсивные и интенсивные технологические параметры.
- 1.3. Равновесное состояния система. Основные термодинамические показатели. Использование термодинамических показателей в ходе проектирование химико технологических процессов [1], [3], [4], [5], [6].

Тема 2. Термодинамика процессов энергетиче- ской деструкции углеводородов......2 ч.

- 2.1. Термодинамической устойчивость углеводородов. Определение основных термодинамических показателей процессов термической переработки алканов, циклоалканов, алкенов и аренов [1], [3], [4], [5], [6].
- 2.2. Термодинамика процессов термического крекинга нефтяных продуктов. Использование результатов термодинамического анализа в ходе оптимизации процесса крекинга [2], [4], [6], [9].

Тема 3. Термодинамическое основы процессов окисления нефтяных углеводородов.....2 ч.

3.1. Функционирование термодинамических пока-

зателей реакции окис- ление различных углеводородов в интервале технологических параметров.

3.2. Определение равновесное состояние процессов окисление порафинов и алкенов и др. Направленность реакции окисление продуктов переработки нефти. [4], [5], [6], [7].

Тема 4. Термодинамика процессов термокаталитической переработки углеводородов.....2ч.

- 4.1. Физико химические основы термокаталитических процессов. Зависимость термодинамических показателей от действия катализаторов. Каталитический крекинг продуктов нефтепереработки.
- 4.2. Определение основных реакции крекинга нефтей с применением термодинамического анализа. Определение степень превращение углеводородов и равновесный состав продуктов процесса каталитического крекинга [1], [2], [3], [4], [6].

Тема 5. Термодинамика промышленных процессов нефтехимического синтеза реализованные на основе газов каталитического крекинга......2ч.

- 5.1. Термодинамической анализ процесса алкилирования изоалканов алкенами.
- 5.2. Термодинамика процессов алкилирования метанола (етанола) изобутиленом;
- 5.3. Определение основных термодинамических показателей процесса получения высоко октановых

компонентов бензина с методом полимеризации алкенов. Применение результатов [1],

- 6.1. Использование результатов термодинамического анализа при разработке технология получения олигомерных фракции на основе низших олефинов;
- 6.2. Термодинамической анализ процессов гидрогенизации олигомерных фракции, применяемых в производстве синтетических смазочных масел и топлив
- 6.3. Термодинамика процессов получения синтетических ефирных масел. Применения результатов в этапе разработке технология соответствующих процессов [4], [6], [8].

Семинар представленного предмета «Термодинамика процессов переработки нефти и нефтехимического синтеза» обучается нинсеследующим темам [1, 2, 4, 5, 7, 8].

I.	Определение термодинамических показателей
	различных углеводородов2 ч.
II.	Использование результатов термодинамичес-
	кого анализа при оптимизации химико-техно-
	логического система2 ч.
III.	Определение термодинамических показателей
	процессов термической превращения алканов,
	тциклоалканов, алкенов и аренов2ч.
IV.	Равновесное состояние процессов окисления
	углеводородов2 ч.
V.	Задача по определению термодинамических
	показателей термокаталитических превраще-
	ния углеводородов2 ч.
VI.	Термодинамической анализ основных реакции
	процесса риформинга2 ч.
VII	I. Задача по термодинамического анализа про-
цес	сов нефтехимического синтеза применяемых с
раз	личного назначениях3 ч

ЛИТЕРАТУРА

Основная:

- 1. Технология, экономика и автоматизация процессов переработки нефти и газа / Под ред. С.А.Ахметова М., Химия, 2005, 735 с.
- 2. Д.В. Tagiyev, H.M. Əlimərdanov, S.İ. Abasov. Kinetika və kataliz, dərs vəsaiti, Bakı, "Ehm" 2014, 616 s.
- 3. Эмануель Н.М., Кнорре Д.Г. Курс химической кинетики. Учеб., Высшая школа, 1984, 463 с.
- 4. Əhmədov E.İ., Rzayeva N.A. Kimyəvi kinetika və kataliz, Bakı, 2005, 165 s.
- A.M.Məhərrəmov, M.R.Bayramov, İ.Q.Məmmədov, G.M. Bayramova. Karbohidrogen xammalının kimyəvi emalı, dərslik, Bakı, Çaşıoğlu, 2012,360 s.
- 6. И.М.Колесников Катализ и производство катализаторов М., «Техника»,2004, 450 с.
- 7. K.Y. Əcəmov, E. Ə. Hüseynova. Kinetika və kataliz, dərslik, Bakı, "ADNSU" 2019, 446 s.

Дополнительная:

- 8. А.В.Кравцов, Е.Н.Ивашкина, Е.М.Юрьев. Теоретические основы каталитических процессов переработки нефти и газа, учеб. пос., Томск, «Изд-во» ГТПУ., 2009, 146 с.
- 9. Ибрагимов Ч.Ш., Бабаев А.И. Научные основы и практические задачи химической кибернетики, учеб. пос., Баку, «АГНА»,2015, 387 стр.
- 10. N.Y.Zeynalov. Kimya texnologiyası proseslərinin riyazi modelləşdirilməsi, dərs vəsaiti, Bakı, "Bakı Universiteti",

- 2016, 180 s.
- 11. Əhmədov E.İ., Məmmədov S.E. Seolit katalizatorları neft kimyasında Бакы, 2005, 165 с.

САМОСТОЯТЕЛЬНЫЕ РАБОТЫ

- 1. Практические задачи по определению термодинамических показателей алканов;
- 2. Распределение свободной энергии углеводородов по молекулярной структуре;
- 3. Практические задачи по определению зависимости свободной энергии нефтяных углеводородов; от температура.
- 4. Практические задачи по определению константы равновесиях процессов н/х синтеза;.
- 5. Определение теплоемкости углеводородов в широком температурном интервале;
- 6. Выбор технологического режима процессов п/н и н*х синтеза на основе законов химической термодинамики;
- 7. Задачи по определению равновесной степени превращения в обратимых процессов н/х синтеза;
- 8. Составление уравнений с целью определения равновесного состава в ходе процесса н/х синтеза;
- 9. Направленность процесса термической переработки нефтяных фракций;
- 10. Практические задачи по определению термодинамических показателей и направленности процессов алкилирования с различным назначением.